|
| __init__ (self, model=None, data_loader=None, train_times=1000, alpha=0.5, use_gpu=False, opt_method="sgd", save_steps=None, checkpoint_dir=None, index_dir=None, analogy_file="analogies.txt") |
|
| load_entity_names (self, index_dir) |
|
| train_one_step (self, data) |
|
| getEntityDict (self, ent_embeddings) |
|
| run (self, link_prediction=False, test_dataloader=None, model=None, is_analogy=False, ray=True, freq=10) |
|
| set_model (self, model) |
|
| to_var (self, x, use_gpu) |
|
| set_use_gpu (self, use_gpu) |
|
| set_alpha (self, alpha) |
|
| set_lr_decay (self, lr_decay) |
|
| set_weight_decay (self, weight_decay) |
|
| set_opt_method (self, opt_method) |
|
| set_train_times (self, train_times) |
|
| set_save_steps (self, save_steps, checkpoint_dir=None) |
|
| set_checkpoint_dir (self, checkpoint_dir) |
|
|
int | work_threads = 8 |
|
| train_times = train_times |
|
| index_dir = index_dir |
|
str | opt_method = opt_method |
|
| optimizer = None |
|
int | lr_decay = 0 |
|
int | weight_decay = 0 |
|
| alpha = alpha |
|
| model = model |
|
| data_loader = data_loader |
|
| use_gpu = use_gpu |
|
int | save_steps = save_steps |
|
| checkpoint_dir = checkpoint_dir |
|
| entity_names = self.load_entity_names(index_dir) |
|
| analogies = analogy.AnalogyScorer(analogy_file=analogy_file) |
|
float | optimizer = 0.0 |
|
◆ getEntityDict()
OpenKE.config.Trainer.Trainer.getEntityDict |
( |
| self, |
|
|
| ent_embeddings ) |
Reads the entity embeddings and returns an dictionary
mapping entity names to their corresponding embeddings.
The documentation for this class was generated from the following file:
- seed_embeddings/OpenKE/config/Trainer.py